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Outline of this talk

Quantum friction from non-equilibrium FDT

Key results
Quantum friction from t-dep. perturbation theory

 Quantum friction is cubic in velocity

 Quantum friction depends on the way the atom is boosted 
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What is quantum friction?
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An intuitive picture
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An intuitive picture
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Photons and plasmon field 
perceived with a Doppler 
shifted frequency 

Thursday, March 5, 15



A variety of predictions
Zero temperature atom-surface quantum friction
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Fluctuational electrodynamics
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 Prescribed motion
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 Stationary                 frictional force(t ! 1)
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 No general results for non-equilibrium state ⇢̂(1) = ???
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Non-equilibrium FDT
 Dipole moment d̂ = dq̂ ¨̂q(t) + !2

aq̂(t) =
2!a

~ d · Ê(ra(t), t)

 Dynamic polarizability of moving atom
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 An exact, non-equilibrium fluctuation-dissipation relation
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models have the same form
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(Chetrite et al. 2008)
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The modelOther approach: pert. theory

 Prescribed motion

 Our goal is to calculate:

 Polariton field (EM+matter) also in its ground state

✏(!)

 Multi-level atom, initially in its ground state

⇢(0) = |gihg|⌦ |vacihvac|

radiative frictional force 

radiative frictional power
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Transition amplitudes

 Atom-field coupling

 Polariton field Hamiltonian (near-field regime)

 Atom-field states

c(p)n (t)
transition amplitudes for states with 
n-photons in the p-th pert. order

(third order expansion in powers of d)
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Frictional force and power
 Quantum friction force operator:

 Radiated power:

- To second order in perturbation theory, the 
force and power are exponentially small

- To fourth order in perturbation theory, great care must be exercised 
because of possible interferences between the amplitudes

P = P1 + P2

c(p)n (t)

F(2) / exp(�2⌦z/v
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Ideal case: constant v always

 One-photon power dissipated P1

P (4)
1 ! 2 Re[c(1)⇤1 (t)c(3)1 (t)] ⇡ ��gtP

(2)
1

We consider first the idealized case of the atom moving at constant 
velocity at all times r(t) = vt, 8t

 Two-photon power dissipated P2

P (4)
2 ! |c(2)2 |2 / v4
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hence, it is exponentially suppressed

 Frictional force F (4)
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Boosting the atom:
We now consider the more realistic case in which the atom is boosted 
from its initial rest position to a final state in which it moves at 
constant velocity

 One-photon power

 Two-photon power

v(t)

P (4)
2 = PA + PB

is independent of the boostP
A

/ v4
x

P
B

/ v2
x

f(⌧) depends on the boost, and is exponentially 
suppressed for adiabatic boosts !⌧ � 1

P (4)
1 = �PB

Hence, perturbation theory also gives cubic-in-v quantum friction

(Barton 2010)

subtle cancellation!
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Orders of magnitude
 Near-field quantum friction 

Ffric ⇡ �45~⇢2↵2
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surface’s electrical resistivity
static atomic polarizability

87Rb Example: ground state            flying over a silicon surface 

↵0 = 5.26⇥ 10�39 Hz/(V/m)2

v
x

= 340 m/s
za = 10 nm

⇢ = 6.4⇥ 102 ⌦ m Ffric ⇡ �1.3⇥ 10�20 N !

 How to enhance it? How to measure it?
- excited atomic states?
- higher velocities?
- materials with higher resistivities?
- macroscopic bodies?
- ???

- atomic interferometry?
- near-field AFM?
- ???

)
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Conclusions
  Atom-surface quantum friction from general non-equilibrium stat. 

mech.

 Non-equilibrium FDT predicts a cubic-in-v frictional force

 At high temperatures (classical limit), linear-in-v frictional force

 Same analysis possible for quantum friction between macroscopic 
   bodies

 Atom-surface quantum friction from t-dependent perturbation theory

- Dependency on boost history

- Subtle cancellation between one- and two-photon dissipated 
power. This results, again, in cubic-in-v quantum friction
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